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A series of initially planar shock waves was allowed to expand from a shock tube 
into a near half-space. The strength of the wall shock was measured at two positions 
on the slightly concave front wall. These measurements are compared with shock 
strengths predicted by a shock-dynamic model based on the cylindrical expansion of 
a critical shock. Chisnell's (1957) theory is used to account for the effect of the in- 
creasing surface area of the expanding wall shock, and Whitham's (1 957) treatment to 
correct for the curvature of the wall. The criticad shock strength is obtained from 
Skews' (1967) experimental measurements of the Mach number of the self-similar 
wall shock following two-dimensional diffraction a t  a 90" edge. 

The model predicts the relatively small degree of attenuation observed between the 
measuring stations, but overestimates the absolute shock strength. The most likely 
cause is that, in the early stages of expansion, the wall shock experiences further 
attenuation owing to its interaction with the expanding flow. These effects are shown 
to be short range and of negligible importance at  the first measuring station, 1.86 tube 
diameters from the axis. Thus, using the experimental results at this station as the 
starting point, the model predicts accurately the shock strength at  3.76 diameters. 
It is concluded that Chisnell's theory can be applied to the weakening of the wall 
shock in ducts with large abrupt changes in cross-section only when the wall shock 
is some distance from the entrance to the area change. 

1. Introduction 
The behaviour of shock waves in complex configurations is of practical concern in 

the estimation of impulsive loading during dust or gas explosions. Waves of low 
strength are of interest to the designers of internal combustion engines. Apart from 
the practical aspects, there is still need of a better understanding of the interactions 
of shock waves in ducts of varying cross-section. 

Chester (1953, 1954) developed an analytical treatment for the motion of a shock 
wave through a gradually diverging duct. This linearization is strictly valid only for 
small wea changes. Chisnell (1957) integrated Chester's equations and derived a 
relationship connecting the local properties of the shock wave and the cross-sectional 
area of the duct A which is most simply stated as 

Af (2) = constant, (1) 
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where f (2) is a known function of the shock strength (or pressure ratio 2) and the ratio 
of specific heats y. 

Chisnell’s equation has been used in most calculations of shock wave interactions 
in ducts with either sudden or gradual area changes. Indeed it is basic to Whitham’s 
(1 957, 1959) more general theory of shock dynamics. However the theoretical results 
have not always agreed well with experimental measurements. 

Davies & Guy (1971) compared experimental and theoretical results for 4: 1 and 
10: 1 expansions and found a satisfactory correlation only for the smaller area 
change. Deckker & Gururaja (1970) examined the decay of a shock wave in diffusers 
with semi-divergence angles of from 10” to 90” and found that the model overestimated 
the degree of attenuation for all but the very weakest shocks. Further, the predicted 
shock strength at the exit of the diffuser was much greater than the pressure measured 
‘ a  suitable distance behind the transmitted wave ’. Conversely, in similar experiments, 
Nettleton (1  973) found adequate correlation for shocks with 1M up to 3.0 at  5 diameters 
downstream of diffusers for area ratios up to 5.0 and semi-divergence angles up to 
15”. Thus the general application of Chisnell’s equation remains a matter of con- 
troversy. One of the problems is that the predictions are compared with inappropriate 
parameters; for instance, the strength of the unsteady shock has been characterized 
by a single measurement a t  the divergent wall of an expansion duct. Dekker & 
Gururaja (1970) compared the results of applying Chisnell’s theory with pressures 
measured ‘a suitable distance behind the transmitted wave’ a t  40 diameters from the 
exit plane. Here the flow must be approaching a steady state, a condition with which 
Chisnell’s theory is unlikely to correlate. Further, measurements outside the area 
change, even if made close to the exit, may be misleading, since they could be affected 
by the shock wave reflected as the transmitted wave enters the exit duct. Only 
measurements made within the area change should be compared with predictions 
from shock-dynamic models. 

There exists a certain ambiguity about the interpretation of the shock strength 
obtained from (1 ) .  The strength of a shock wave in an area change is non-uniform, but 
can be assigned an average value, predicted by Chisnell’s theory. In  a situation where 
the strength varies rapidly along the shock front, this bears little relevance to the true 
unsteady shock strength at  a given point on the front. The average value approxi- 
mates to the unsteady strength only when applied to a portion of the shock front 
across which the strength is not changing rapidly. 

In order to overcome these difficulties in a study of the axial decay of an expanding 
shock, the authors (1  975) formulated the area relat,ionships in terms of the ratio of the 
surface area of an axial element of the decaying shock wave to that of the corre- 
sponding element of the critical shock. The critical shock is the configuration at the 
instant of axial decay. The predictions of this model were in excellent agreement with 
the experimental measurements of axial shock strengths in large abrupt area changes 
where the shock was free to expand in either two or three dimensions. It was concluded 
that Chisnell’s theory could be extended to analyse the shock strengths a t  the axis of 
large abrupt area changes, provided that the initial area, was defined in terms of the 
surface area of the axial segment of the critical shock. 

The complementary results reported in this paper are for shock waves decaying 
along the slightly concave front wall of the same three-dimensional abrupt area change. 
An idealized model is developed in $ 4  in which the concept of the critical shock is 
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FIGURE 1.  Shock tube and expansion tank. 

combined with Skews' experimental measurements of the self-similar wall shock 
following diffraction a t  a 90" edge. The attenuation due to the cylindrically symmetri- 
cal expansion of the wall shock is quantified by application of Chisnell'sequations, and 
Whitham's treatment is used to correct for the curvature of the wall. This is shown 
to be realistic, although it considerably overestimates the strength of the wall shock. 
The model combines several theories, but it is essentially a test of Chisnell's theory. 
Discrepancies between the predicted and experimental results are explained by the 
further attenuation of the wall shock owing to its interaction with the rapidly ex- 
panding pursuing flow. 

2. Experimental 
Figure 1 is a scale diagram of the near half-space formed by the expansion tank 

(1  m in diameter and 1 m long) attached to the driven section of a 79 mm bore shock 
tube. The front wall of the tank is a section of radius 1 m centred on the axis of the 
tube at  0. Hence the angle 0, between the normal to the wall and the axis of the shock 
tube is 8.5" at A and 17-3" a t  B,  these points being at radial distances of 0.147 m and 
0.297m respectively. The Mach number of the initial shock was calculated at the 
entrance of the tank, which was taken as the sharp edge T where the rapid area 
change begins. The lead-in duct to the tank is of the same bore and co-axial with the 
shock tube. The angle between the tangent to  the wall a t  T and the axis of the tube 
is 87.8". 

Planar shocks of initial Mach number between 1.5 and 3.5 were allowed to expand 
into the tank. The passage of the shock wave radially along the curved wall was 
recorded by Kistler 601 A pressure transducers mounted flush with the wall at  A and B. 
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FIQURE 3. Experimental wall shock strength and predictions of the critical shock model. 0, 
, experimental a t  A and B;  -, - - -, model predictions for cylindrical or spherical symmetry. 

Pressure profiles such as figure 2 (plate 1) were obtained from each transducer on 
separate dual-beam oscilloscopes at  1 ms cm-'. By means of an internal sweep delay, 
peak (a) ,  due to the passage of the wall shock, was also displayed at 20pscm-l. Sum- 
mation of the sweep delay and the time on the trace before the arrival of the wall 
shock gave the time 7 for the shock to arrive at  the appropriate gauge. 

3. Results 
The pressure profiles at  stations A and B shown in figure 2 are typical. The wave 

processes involved have been discussed by Smith (1966). The transducer first ex- 
periences an increase in pressure at  (a )  due to the passage of the wall shock across the 
gauge. This is followed by a strong expansion wave which lowers the pressure at  ( b )  
below the initial pressure PI as the gas behind the initial shock expands into the tank. 
The peaks at  (c) are attributed to weak reflexions as the wall shock turns the sharp 
bend at  N (figure 1). They are noticeably more intense a t  station A because of the 
strengthening effect of the concave front wall and the focusing of the radially con- 
verging waves. The largest peaks (d)  are due to the arrival of the shock wave reflected 
from the rear wall of the tank. 

The present quantitative analysis concerns only peak (a). Figure 3 shows the near 
linear dependence on 2 of the wall shock strengths 7r; and 7ri recorded a t  stations A 
and B.  The difference between the measurements at  the two stations increases only 
slightly with 2; 7r; is always slightly greater than ni. This is a genuine difference and 
not due to calibration errors, since interchanging the transducers has no significant 
effect. The wall shock has attentuated greatly from the initial shock strength, so that 
the over-pressure 7r'- 1 at each station is generally less than 10% of the initial over- 
pressure 2 - 1. Thus most of the decay in shock strength occurs before the shock wave 
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Initial shock Shock strength Axial Shock strength Axial 
strength distance (--h-------, distance 

2-64 1.18 1.51 0.144 1-12 1.10 0.304 
4.13 1.33 1.93 0.156 1.27 1.40 0.324 
5.18 1.42 2.20 0.163 1.36 1.56 0.337 
6.78 1-55 2.58 0.173 1.49 1.73 0.352 

TABLE 1.  Comparison of simultaneous wall and axial shock strengths. 

z Wall A Axial x A  (m) Wall B Axial x.¶ (m) 

arrives at A ,  with only a slight further attenuation between A and B. (The curves 
in figure 3 arise from the model developed in $4.)  

The present results provide the strength of the wall shock at  A and B, together 
with the time T taken to travel from the entrance of the tank. Similar measurements 
have been reported (Sloan & Nettleton 1975) of the axial decay of shocks with four 
different initial strengths. These results are combined in table 1 to give the axial 
shock strength and position at the instant of the wall shock measurement. While 
the axial shock travels the distances X ,  and X,, the wall shock propagates 0.108 and 
0-258m from the edge of the shock tube along the concave wall to stations A and B 
respectively. It is obvious that the axial shock is stronger and travels further in equal 
intervals of time. 

4. The wall shock 
4.1. General 

The wall shock is produced by a combination of hydrodynamic processes originating 
a t  the entrance of the abrupt area change. The initial shock wave undergoes diffraction 
at the sharp edge T before expanding axially along the wall. This wall shock is subject 
to the following simultaneous interactions. 

(i) Attenuation due to the increase in surface area of the expanding shock wave. 
(ii) Attenuation due to the effect of the rapidly expanding flow in the gas behind the 

(iii) Enhancement due to the concave curvature of the wall. 
The theories of Chisnell(l957) and Whitham (1957, 1959) are used to model (i) and 

(iii). It is assumed that the interaction of the wall shock with the pursuing flow is 
negligible. 

4.2. A critical shock model 

The authors (1975) developed the concept of the critical shock to analyse 
experimental measurements of axial shock strengths. Basically the analysis 
requires that the Chisnell relationship is applied only when the expansion process 
predominates over other wave processes, such as diffraction and reflexion, and 
only to a shock front for which the average strength approximates to the true shock 
strength. Application to the present results requires a closer examination of the 
diffraction process. 

Consider now a planar shock wave diffracting around a 90" sharp corner T, 
where the shock is free to expand only in the x, y plane. Figure 4 represents successive 

wall shock. 
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FIGURE 4. Successive positions of a shock wave diffracting in two 
dimensions. -, shock wave; ---, expansion fan; ---, ray. 

positions of the wave pattern for an idealized case. The head of the expansion 
wave, which propagates from the corner with sonic velocity relative to the shocked 
gas, overtakes the shock wave along the straight line TS. The strength of the shock 
front decreases along the shock envelope from S to D, where it meets the tail of the 
expansion wave. The strength of the shock at  D is that of the wall shock CD, which 
is tangential to the curved shock envelope and normal to the wall. Whitham’s idealized 
treatment requires that this configuration is self-similar. Thus for a given initial 
Mach number, an increase in time simply increases the scale of the diffraction SDC to 
QRG. In particular, thewall shock has constant velocity and thus constant strength 2,. 

Whitham defined a ray to be orthogonal to the shock at  the point of contact. Since 
in the idealized treatment the planar wall shock remains normal to the wall, the rays 
connecting two successive positions of the wall shock are parallel in the region TRG. 
(In figure 4 only sample rays are extended into the region TRQ, where the rays are 
curved.) As the diffraction pattern expands, the point D moves away from the wall 
along the straight line TDR as more of the shock envelope decays to the strength of 
the wall shock. Thus effectively there is no expansion of the initially formed wall 
shock in the x direction, only a decay of the shock envelope to the strength 2 ,  of the 
self-similar wall shock. 

In order to model a three-dimensional diffraction, it is assumed, by analogy, that 
the wall shock remains normal to the wall but is free to expand only in the plane y, 
z of the wall. Thus as the shock propagates along the wall, it undergoes continuous 
attenuation owing to its increasing surface area. 

Figure 5 represents a cross-section through two positions of an expanding shock 
wave bounded by a planar wall. The shaded areas CDEF and GHJK are sections of 
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FIGURE 5. Section through succesSivs positions of a shock 
wave expanding in three dimensions. 

the wall shock which must be cylindrical about the axis, since the model constrains 
the wall shock to expand only in the y, z plane and the system is axisymmetric. 
Furthermore, since rays are by definition normal to the shock, the common radii 
VG,  VK and PH,  PJ can be considered as boundaries of a hypothetical ray tube. 
The propagation of an element of a shock wave along a ray tube is analogous to 
propagation in a tube of smoothly varying cross-section with solid walls. Thus the 
shaded section CDEF of the wall shock expands to GHJK, and owing to the cylindrical 
symmetry of the wall shock, the ratio of the surface areas is equal to the ratio of the 
radii. 
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Extrapolation of the model towards the instant of diffraction implies that  the wall 
shock tends to the strength 2, in the self-similar case of two-dimensional diffraction. 
I n  the limit this is the critical shock and is the initial configuration for the present 
model of the expanding wall shock. This system fulfils the requirements of the critical 
shock model; that is, provided that there is negligible interaction between the ex- 
panding shock wave and the pursuing flow, the predominant influence is the change 
in surface area due to the local geometry, as defined by the ray tubes. Further, the 
wall shock is of uniform strength up to the point D,  where i t  merges with the envelope 
of the main shock. 

The surface area A‘ of the expanding shock wave is defined as the area of the 
cylindrical shock wave in a given ray tube adjacent to the wall, such as G V K ,  HPJ.  
The surface area A,, of the critical shock is the limit of this area as the segment of the 
shock is extrapolatled backwards to the instant of diffraction of the initial shock. Clearly 
A ,  is proportional to r,,, the radius of the throat of the area change. 

Consider now an abrupt area change with a planar side wall normal to  the axis. 
I n  the idealized model the shock wave is diffracted a t  the edge, instantly becoming 
the critical shock of strength Z,, and surface area A ,  proportional to the radius of the 
exit duct. The subsequent expansion to a strength 2’ has cylindrical symmetry. For 
the first step of a computation of shock attenuation, 

where r is the distance of the wall shock from the axis a n d f ( 2 )  is the appropriate 
Chisnell function [see (I)]. For subsequent steps, 

These relationships for a planar wall are additive and the result is identical whether 
it is computed in a series of small steps or a single step. 

The effect on the shock strength of introducing wall curvature into the calculation 
is computed as a series of small perturbations on the planar-wall solution. Since the 
expansion of the shock and its strengthening occur simultaneously, it is not sufficient 
to predict the shock strength 2’ on a planar wall and correct this for the curvature to 
obtain the strength 7r’ on a curved wall. The results are not additive, so that the 
correction must be carried out in a number of small steps. Essentially the curved 
wall is replaced by a series of small straight tangential wedges. 

Consider now a plane shock moving from a planar to a curved wall. By Whitham’s 
theory, the solution is a simple wave through which w‘ ,  corresponding to the new 
shock strength, is given by 

= w+e,, (4) 

where Ow, measured in radians, is the change in direction of the normal to the wall and 
is positive for a concave wall, negative for a convex wall. I n  the present experiments 
0, is 0.148 and 0.302 a t  A and B respectively. 

For a wall of radius of curvature R, the distance measured along the wall between 
the wall shock and the axis is ROW. This replaces T in (2) and (3). The computational 
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FIGURE 6. The strength of the critical shock. 0, 0 ,  derived from ni and ni, cylindrical sym- 
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FIGURE 7. Decay of a shock wave of initial strength 8.35. (a )  n' (concave wall), cylindrical sym- 
metry. (b)  2' (planar wall), cylindrical symmetry. (c )  n' (concave wall), spherical symmetry. ( d )  2' 
(planar wall), spherical symmetry. , experimental. 

procedure was to  build up to the required values of 0, in small increments, and after 
each step to use (4) to correct for the curvature. This provided a new (known) value 
of the shock strength 2' and thus the value of the Chisnell function a t  the start of 
the next step of the computation. The convergence tests were that there was a negligible 
change in n' a t  any point on the wall when the increment was greatly reduced and that 
the result was unaffected when the curvature correction was performed before ;he 
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expansion step. An increment of 0.0175 (1") proved satisfactory in the present case. 
Reducing this by a factor of 10 changed the resultant values of n' by much less 
than 1 yo. 

A simultaneous numerical integration of (1)  and (4) gave identical results to this 
small-step procedure. However the former proved to be a more cumbersome com- 
putation and was used only to confirm the small-step calculations at  several initial 
shock strengths. 

The predictions of the model are presented for the passage of the wall shock across 
either a curved (n') or a planar (2') wall. To demonstrate the sensitivity of the model, 
the results for the cylindrically expanding wall shock are also compared with those 
where the critical diffracted shock was assumed to have expanded with spherical 
symmetry. 

4.3. The strength of the critical shock 
Theoretically the critical shock strength a t  the instant of diffraction must be the same 
in two and three dimensions. Locally the fluid does not know about the existence of 
axisymmetry at  that instant and becomes aware of it only as the waves spread out. 
This is independent of any particular model. Thus although the shock wave is free to 
expand in three dimensions, the strength of the critical shock is the same as that of 
the self-similar two-dimensional diffracted wall shock (2,). 

This can be obtained directly by Whitham's theory with 8, = - 1.53 (87.8") in (4). 
However the theory is known to be inadequate for weak shocks leading to negative 
values of w' ,  i.e. for 2 < 1.78. Physically this means that diffraction of these weak 
shocks results in sound waves. This does not agree with Skews' (1  967) experiments, 
in which shocks of significant strength were measured for weak initial shocks. Skews' 
results for two-dimensional diffraction at  a 90" edge provide more satisfactory values 
for 2, and consequently are used in the quantitative application of the model. These 
have been corrected by use of ( 2 )  to give values for an 87.8" (0, = +0-039) edge and 
are plotted in figure 6 together with those from Whitham's theory. 

4.4. Comparison between the model and experimental results 

A typical initial shock of Mach number 2.7 (2 = 8.35) in air produces a critical shock 
strength 2, of 2.53. Figure 7 illustrates the effect of the curvature of the wall and also 
demonstrates the sensitivity of the model to the symmetry of the expanding shock. 
The degree of amplification of the wall shock due to the curvature of the wall is most 
pronounced for the cylindrically expanding shock, because the degree of shock 
strengthening is independent of the assumed symmetry and is proportionately greater 
for stronger shocks. The model shows that, after an initial period of decay, the 
strengthening effect of the curvature eventually predominates over the attenuation 
due to expansion and the wall shock wave increases in strength. For a side wall with 
a smaller radius of curvature, or for a weaker initial shock, this effect is accentuated 
and occurs nearer to the entrance of the area change. Although shock strengthening 
has not been observed in the present experiments, it seems likely that it could occur 
under the appropriate conditions. 

Quantitatively the correlation between the predictions of the model and the 
experimental results is poor. The measured shock strengths (figure 7)  lie between $he 
computations for the two assumed symmetries. This is generally true as illustrated 
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in figure 3, where the predicted values of 7~‘ are compared with the experimental 
measurements over the complete range of initial shock strengths. 

For a wall shock assumed to be expanding with cylindrical symmetry the model 
predicts reasonably well the attenuation between stations A and B, except for very 
weak initial shock strengths, when it predicts shock strengthening between A and B 
for Z < 2.8. This was not observed in practice but is readily explained by the tendency 
of Whitham’s theory to over-correct for the curvature. Quantitatively, the model 
overestimates the strength of the shock by 25 % and 10 % respectively for strong and 
weak initial shocks. 

When the expansion is assumed to have spherical symmetry, the model greatly 
overestimates the attenuation between stations A and B, but never predicts shock 
strengthening. The computed shocks are always weaker than those measured experi- 
mentally. 

5. Discussion 
The essential feature of the experimental results is the small degree of attenuation 

of the wall shock between stations A and B.  This is reasonably predicted by the model, 
but the absolute strength of the wall shock is considerably overestimated. Thus the 
basic assumptions of the model require examination. 

The premise of cylindrical symmetry has been discussed and is apparently sound. 
There remain the assumptions of the strength of the critical shock and negligible 
interaction between the expanding flow and the decaying shock, so that attenuation 
is due solely to the increasing surface area of the shock. These related assumptions 
have been examined by the following procedure. On the premise of cylindrical sym- 
metry, the model was extrapolated backwards to the instant of diffraction to determine 
the actual critical shock strength required to give the experimental results. For each 
initial shock strength, the measurements of 7 ~ ’  at A and B each predicted a value of 
the strength of the critical shock. If the model is valid, then these should be coincident,. 

Figure 6 is a plot of these derived critical shock strengths over a range of Z .  It can 
be seen that when cylindrical expansion is assumed the pairs of critical shock strength 
values are effectively coincident for 2 > 7.0. For weaker shocks the values diverge 
by about 0.1, and the critical shock strength derived from ~2 is always greater than 
that derived from n-;. This is partly accounted for by the inadequacy of Whitham’s 
theory when applied to weak shocks; this theory tends to concentrate the curvature 
of the wall over an insufficiently large segment of the shock wave, leading to an 
overestimation of the relative shock strengthening on a concave wall. Consequently 
each of the predicted critical shock strengths for Z < 7.0 is too low, and the error is 
greater for the results from station B. Correction of this would bring the derived 
critical shock strengths nearer to the coincidence required by the idealized model. 

The argument that the degree of attenuation observed between A and B is so small 
that it  is insensitive to the choice of model is disproved by repetition of the above 
procedure for a critical shock expanding with spherical symmetry. The derived 
critical shock strengths now do not show any tendency to coincide, except for very 
low initial shock strengths. 

This is strong evidence that the model is essentially valid. An important feature of 
figure 6 is that the derived strength of the critical shock is lower than that of Skews’ 
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self-similar diffracted shock for all initial shock strengths. Thus the self-similar shock 
wave must experience further attenuation, which may occur either at the instant of 
diffraction or soon after. Thus there may be a fundamental, unappreciated difference 
between the diffraction processes in two and three dimensions, and therefore the 
assumptions as to the strength of the critical shock are wrong. Alternatively, the 
interaction between the expanding shock wave and the unsteady pursuing flow may 
not be negligible, as assumed in the model. This seems a more probable cause of the 
observed discrepancies, which are believed to be evidence of the considerable influence 
of these interactions in the present experiments. 

The near-coincidence of the strengths of the critical shock derived from the pairs of 
experimental measurements of n' suggests that this further attenuation must occur 
soon after diffraction and that the assumption of negligible interaction with the flow 
becomes increasingly valid as the wall shock moves away from the entrance to the 
area change. Consequently a more accurate assessment of the strength of the decaying 
wall shock should be obtained by starting the computation at  A and using the experi- 
mental values n: of the wall shock strength. In  the model these were allowed to 
expand to station B with either cylindrical or spherical symmetry. With Z > 7.0, the 
predictions for cylindrical symmetry are within 2% of the measured values. For 
weaker initial shocks the correlation deteriorates to 5 "/b. Nevertheless, this is a very 
satisfactory result and together with figure 6 is strong evidence that the wall shock is 
appropriately modelled by cylindrical symmetry and that the Chisnell-Whitham 
approach can be applied to ducts with large abrupt increases in cross-section only 
when the wall shock is some distance from the entrance to the area change. Starting 
the model at the instant of diffraction leads to an overestimation of the wall shock 
strength, as already discussed. Clearly, allowing the shock to expand with spherical 
symmetry between stations A and B (figure 8) leads to much weaker wall shocks than 
those measured, again demonstrating the sensitivity of the model. 

Previous work (Sloan & Nettleton 1975) introducing the concept of the critical 
shock concluded that the model provided only a method of analysis and a means of 
extrapolating beyond the conditions of experiments. Direct prediction of the axial 
shock strength was not possible because the centre of symmetry of the expanding 
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shock wave had to be determined by experiment. In theory the present model should 
provide absolute values, because the value 2, of the self-similar wall shock is known 
and the centre of symmetry must be the axis. Unfortunately it has been shown that 
the expanding shock wave experiences further attentuation owing to interactions 
between the characteristics generated by the expanding shock and the unsteady flow 
behind it. This limits the accuracy of the model. 

6. Conclusions 
A model of the behaviour of a wall shock in a large abrupt area expansion has been 

developed on the basis of cylindrical expansion of the initial diffracted shock (Skews 
1967). The attenuation of the shock wave is described by Chisnell’s (1957) theory, 
and Whitham’s (1957) treatment accounts for the strengthening along the concave 
wall. 

The experimental observation that the shock wave a t  the wall experiences only a 
small degree of attenuation between the two measuring stations, 1.86 and 3.76 tube 
diameters from the axis, is shown to arise because of the constraint of cylindrically 
symmetrical expansion imposed on the wall shock together with the strengthening 
effect on the concave wall. 

Computed shock strengths are greater than those measured, because the critical 
shock is initially attenuated much more rapidly than is predicted by the model. This 
may occur in the instantaneous diffraction process, or more probably through inter- 
actions between the wall shock and the rapidly expanding flow behind it. These are 
shown to be short-range effects and are already insignificant at the first measuring 
station. Thus if the experimental shock strength a t  1-86 diameters is used, the model 
predicts accurately the shock strength a t  3.76 diameters. 

The model is essentially a test of Chisnell’s theory, which can therefore be applied 
to ducts with large abrupt increases in cross-section only when the wall shock is some 
distance from the entrance to the area change. 

The work was carried out at  the Central Electricity Research Laboratories and is 
published by permission of the Central Electricity Generating Board. The authors 
would like to thank Dr V. M. Morton for assisting with the numerical analysis and 
Professor A. G. Gaydon for many helpful discussions. 
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FIGCillE 2. Typical pressitre profiles. Uppcr traces, 1 ms di\-.-I; 1owcr trace. 
20pusdiv.-l; A ,  5.7 x 103N~n-2div.-1; B, 5.3 x 103Nm-2div.-1. 
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